AutoCAD 3DMAX C语言 Pro/E UG JAVA编程 PHP编程 Maya动画 Matlab应用 Android
Photoshop Word Excel flash VB编程 VC编程 Coreldraw SolidWorks A Designer Unity3D
 首页 > 汇编语言

分页管理机制

51自学网 http://www.51zixue.net
    80386开始支持存储器分页管理机制。分页机制是存储器管理机制的第3二部分。段管理机制实现虚拟地址(由段和偏移构成的逻辑地址)到线性地址的转换,分页管理机制实现线性地址到物理地址的转换。如果不启用分页管理机制,那么线性地址就是物理地址。本文将介绍80386的存储器分页管理机制和线性地址如何转换为物理地址。

<一>存储器分页管理机制

    在保护模式下,控制寄存器CR0中的最高位PG位控制分页管理机制是否生效。如果PG=1,分页机制生效,把线性地址转换为物理地址。如果PG=0,分页机制无效,线性地址就直接作为物理地址。必须注意,只有在保护方式下分页机制才可能生效。只有在保证使PE位为1的前提下,才能够使PG位为1,否则将引起通用保护故障。
    分页机制把线性地址空间和物理地址空间分别划分为大小相同的块。这样的块称之为页。通过在线性地址空间的页与物理地址空间的页之间建立的映射,分页机制实现线性地址到物理地址的转换。线性地址空间的页与物理地址空间的页之间的映射可根据需要而确定,可根据需要而改变。线性地址空间的任何一页,可以映射为物理地址空间中的任何一页。
    采用分页管理机制实现线性地址到物理地址转换映射的主要目的是便于实现虚拟存储器。不象段的大小可变,页的大小是相等并固定的。根据程序的逻辑划分段,而根据实现虚拟存储器的方便划分页。
    在80386中,页的大小固定为4K字节,每一页的边界地址必须是4K的倍数。因此,4G大小的地址空间被划分为1M个页,页的开始地址具有“XXXXX000H”的形式。为此,我们把页开始地址的高20位XXXXXH称为页码。线性地址空间页的页码也就是页开始边界线性地址的高20位;物理地址空间页的页码也就是页开始边界物理地址的高20位。可见,页码左移12位就是页的开始地址,所以页码规定了页。
    由于页的大小固定为4K字节,且页的边界是4K的倍数,所以在把32位线性地址转换成32位物理地址的过程中,低12位地址保持不变。也就是说,线性地址的低12位就是物理地址的低12位。假设分页机制采用的转换映射把线性地址空间的XXXXXH页映射到物理地址空间的YYYYYH页,那么线性地址XXXXXxxxH被转换为YYYYYxxxH。因此,线性地址到物理地址的转换要解决的是线性地址空间的页到物理地址空间的页的映射,也就是线性地址高20位到物理地址高20位的转换。

<二>线性地址到物理地址的转换

1.映射表结构

    线性地址空间的页到物理地址空间的页之间的映射用表来描述。由于4G的地址空间划分为1M个页,因此,如果用一张表来描述这种映射,那么该映射表就要有1M个表项,若每个表项占用4个字节,那么该映射表就要占用4M字节。为避免映射表占用如此巨大的存储器资源,所以80386把页映射表分为两级。
    页映射表的第一级称为页目录表,存储在一个4K字节的物理页中。页目录表共有1K个表项,其中,每个表项为4字节长,包含对应第二级表所在物理地址空间页的页码。页映射表的第二级称为页表,每张页表也安排在一个4K字节的页中。每张页表都有1K个表项,每个表项为4字节长,包含对应物理地址空间页的页码。由于页目录表和页表均由1K个表项组成,所以使用10位的索引就能指定表项,即用10位的索引值乘以4加基地址就得到了表项的物理地址。
    下图显示了由页目录表和页表构成的页映射表结构。从图中可见,控制寄存器CR3指定页目录表;页目录表可以指定1K个页表,这些页表可以分散存放在任意的物理页中,而不需要连续存放;每张页表可以指定1K个物理地址空间的页,这些物理地址空间的页可以任意地分散在物理地址空间中。需要注意的是,存储页目录表和页表的基地址是对齐在4K字节边界上的。
分页管理机制

2.表项格式

    页目录表和页表中的表项都采用如下图所示的格式。从图中可见,最高20位(位12—位31)包含物理地址空间页的页码,也就是物理地址的高20位。低12位包含页的属性。下图所示的属性中内容为0的位是Intel公司为80486等处理器所保留的位,在为80386编程使用到它们时必须设置为0。在位9至位11的AVL字段供软件使用。表项的最低位是存在属性位,记作P。P位表示该表项是否有效。P=1表项有效;P=0表项无效,此时表项中的其余各位均可供软件使用,80386不解释P=0的表项中的任何其它的位。在通过页目录表和页表进行的线性地址到物理地址的转换过程中,无论在页目录表还是在页表中遇到无效表项,都会引起页故障。其它属性位的作用在下文中介绍。

页目录表或页
表的表项格式
BIT31—BIT12 BIT11—BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
物理页码AVL00DA00U/SR/WP

3.线性地址到物理地址的转换

    分页管理机制通过上述页目录表和页表实现32位线性地址到32位物理地址的转换。控制寄存器CR3的高20位作为页目录表所在物理页的页码。首先把线性地址的最高10位(即位22至位31)作为页目录表的索引,对应表项所包含的页码指定页表;然后,再把线性地址的中间10位(即位12至位21)作为所指定的页目录表中的页表项的索引,对应表项所包含的页码指定物理地址空间中的一页;最后,把所指定的物理页的页码作为高20位,把线性地址的低12位不加改变地作为32位物理地址的低12位。
    为了避免在每次存储器访问时都要访问内存中的页表,以便提高访问内存的速度,80386处理器的硬件把最近使用的线性—物理地址转换函数存储在处理器内部的页转换高速缓存中。在访问存储器页表之前总是先查阅高速缓存,仅当必须的转换不在高速缓存中时,才访问存储器中的两级页表。页转换高速缓存也称为页转换查找缓存,记为TLB。
    在分页机制转换高速缓存中的数据与页表中数据的相关性,不是由80386处理器进行维护的,而必须由操作系统软件保存,也就是说,处理器不知道软件什么时候会修改页表,在一个合理的系统中,页表只能由操作系统修改,操作系统可以直接地在软件修改页表后通过刷新高速缓存来保证相关性。高速缓存的刷新通过装入处理器控制寄存器CR3完成,实际过程可能用如下的两条指令实现:
    mov     eax,cr3    mov     cr3,eax
    一个重要的修改页表项的特殊情况不需要对页转换高速缓存刷新,这种情况是指修改不存在表项的任一部分,即使P位本身从P=0改变为P=1时也一样,因为无效的表项不会存入高速缓存。因此,当无效的表项被改变时,不需要刷新高速缓存。这表明在从磁盘上读入一页使其存在时,不必刷新高速缓存。
    在一个多处理器系统中,必须特别注意是否在一个处理器中执行的程序,会改变可能由另外的处理器同时访问的页表。在80386处理器中,每当要更新页表项并设置D位和A位时,通过使用不可分的读/修改/写周期支持多处理器的配置。对于页表项的软件更新需要借助于使用LOCK前缀,从而保证修改页表的指令工作在不可分的读/修改/写周期中。在改变一个可能由另外的处理器使用的页表之前,最好使用一条加锁的AND指令在一个不可分的操作中将P位清除为0,然后,该表项可根据要求进行修改,并随后把P位置成1而使表项成为可用。当修改页表项时必须及时通知(通常使用中断方式)系统中该表项已被高速缓存的所有处理器刷新各自的页转换高速缓存,以撤消该表项的旧拷贝。在表项的旧拷贝被刷新之前,各处理器仍可继续访问旧的页,并可以设置正被修改的表项的D位。如果这样做引起表项修改失败,则分页机制高速缓存最好在标记为不存在之后,并在对表项进行另外的修改之前进行刷新。

 

<

 

 

 

上一篇:DeviceIoControl接口  下一篇:控制转移(1)